Excitation energy transfer between closely spaced multichromophoric systems: effects of band mixing and intraband relaxation.
نویسندگان
چکیده
We theoretically analyze the excitation energy transfer between two closely spaced linear molecular J-aggregates, whose excited states are Frenkel excitons. The aggregate with the higher (lower) exciton band edge energy is considered as the donor (acceptor). The celebrated theory of Förster resonance energy transfer (FRET), which relates the transfer rate to the overlap integral of optical spectra, fails in this situation. We point out that, in addition to the well-known fact that the point-dipole approximation breaks down (enabling energy transfer between optically forbidden states), also the perturbative treatment of the electronic interactions between donor and acceptor system, which underlies the Förster approach, in general loses its validity due to overlap of the exciton bands. We therefore propose a nonperturbative method, in which donor and acceptor bands are mixed and the energy transfer is described in terms of a phonon-assisted energy relaxation process between the two new (renormalized) bands. The validity of the conventional perturbative approach is investigated by comparing to the nonperturbative one; in general, this validity improves for lower temperature and larger distances (weaker interactions) between the aggregates. We also demonstrate that the interference between intraband relaxation and energy transfer renders the proper definition of the transfer rate and its evaluation from experiment a complicated issue that involves the initial excitation condition. Our results suggest that the best way of determining this transfer rate between two J-aggregates is to measure the fluorescence kinetics of the acceptor J-band after resonant excitation of the donor J-band.
منابع مشابه
Correlated Fluctuations and Intraband Dynamics of J-Aggregates Revealed by Combination of 2DES Schemes
The intraband exciton dynamics of molecular aggregates is a crucial initial step to determine the possibly coherent nature of energy transfer and its implications for the ensuing interband relaxation pathways in strongly coupled excitonic systems. In this work, we fully characterize the intraband dynamics in linear J-aggregates of porphyrins, good model systems for multichromophoric assemblies ...
متن کاملPhotoinduced Intra- and Intermolecular Energy Transfer in Chlorophyll a Dimer.
Applying nonadiabatic excited-state molecular dynamics, we investigate excitation energy transfer and exciton localization dynamics in a chlorophyll a (Chla) dimer system at the interface of two monomers of light-harvesting complex II trimer. After its optical excitation at the red edge of the Soret (B) band, the Chla dimer experiences an ultrafast intra- and intermolecular nonradiative relaxat...
متن کاملExcited-state relaxation in PbSe quantum dots.
In solids the phonon-assisted, nonradiative decay from high-energy electronic excited states to low-energy electronic excited states is picosecond fast. It was hoped that electron and hole relaxation could be slowed down in quantum dots, due to the unavailability of phonons energy matched to the large energy-level spacings ("phonon-bottleneck"). However, excited-state relaxation was observed to...
متن کاملTwo-dimensional electronic spectroscopy of the B800-B820 light-harvesting complex.
Emerging nonlinear optical spectroscopies enable deeper insight into the intricate world of interactions and dynamics of complex molecular systems. 2D electronic spectroscopy appears to be especially well suited for studying multichromophoric complexes such as light-harvesting complexes of photosynthetic organisms as it allows direct observation of couplings between the pigments and charts dyna...
متن کاملInfluence of Interface Thermal Resistance on Relaxation Dynamics of Metal-Dielectric Nanocomposite Materials under Ultrafast Pulse Laser Excitation
Nanocomposite materials, including noble metal nanoparticles embedded in a dielectric host medium, are interesting because of their optical properties linked to surface plasmon resonance phenomena. For studding of nonlinear optical properties and/or energy transfer process, these materials may be excited by ultrashort pulse laser with a temporal width varying from some femtoseconds to some hund...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journal of physical chemistry. B
دوره 110 38 شماره
صفحات -
تاریخ انتشار 2006